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STABILITY OF BODIES MADE OF NON-HOMOGENEOUSLY 
AGING ANISOTROPIC, VISCOELASTIC MATERIAL l 

V.D. POTAPOV 

Results ofthe study of stability of compressed rods made of a non- 
homogeneously aging viscoelastic material are generalized to the case 
of an arbitrary body with anisotropy. 

Let us consider a body acted upon by volume forces F and surface loads q applied at the 
boundary of the body S,, in an orthogonal 
The points of the body undergo, 

Zi (i = 1, 2, 3), F = {Pi], g = {ql) coordinateas';s;m. 
under the action of these forces, the displacements , , 

determining the trajectory of the unperturbed motion. 
Let us assume that inthe initial state the body has a small initial distortion aniD( 

In this case the body undergoes additional displacements avi (t, x) so that the total displacement 
is u.* = 
to unity). 

u, + a (c., $ r$"). The parameter a is introduced arbitrarily (and can be assumed equal 
The motion of the body determined by the displacements ui* will be called 

perturbed, and the displacements cL'i will be called perturbations. 
Let us introduce the displacement norm (V is the volumeofthe body) 

Here and henceforth the repeated indices denote summation. 

Definition. An unperturbed motion of a viscoelastic body will be called stable, if for 
any number A > 0 a number 6 = 6(A)> 0 can be found such that for any initial distortion 
ct.i' satisfying the inequality ?I/ v'II< 6. the corresponding displacements a~‘, satisfy the 
inequality a//vjl<A. O<tCr. 

If the motion of the body is studied within a finite time interval IO,Tl and the critical 
value of the displacement norm j/ v/I*is given, we can speak of the critical time t,, defining 
it as the instant at which the displacement norm a/j VII first attains the value 11 VI/*: a maxI/ v 

(t)Il<IIvII*,O<~t(t, with aIIv(t,)lI=ll~l/*. 
We shall call the body stable in the time interval IO, Tl, if r,> T. 
Analogous definitions of stability were used in connection withthenon-homogeneously 

aging viscoelastic rods in Ii, 21 where TU,P[ y(t, r)l. ZE IO, 1) (I is the rod length) was used 
as the rod deflection norm. 

Assuming that the deformations are Small, we write the equations of state for the material 

in the form /l/ 

oij = (Ei~kl - Rijkl) Ekl (1) 
t 

~ijkl= ~ijki (t +  p (x)), Rij,lekl= S Rfjklekl (T) dT* &i = Rajkl (t i P (X)1 ’ + P(X)) 

The moduli of elasticity Einl and relaxation kernels @jkl of the material satisfy the 
following relations: 
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(2) 

lim SUP S Rijkl (h 7) dT = &I 
T-Q 1,T T 

The function p(x) which has continuous first derivatives in the whole region occupied 
by the body, determines the age of the material points with coordinates x, at the instant of 
application of the external load. 

Assuming that the external loads are conservative (dead weight), we shall write the 
functional /3/ as 

Eij = + {(Ui, j + Uj, 4) + = (W, j + Vj, i) + 

[(uk, i + =vk. i + =G i) (uk, j + mk, j + &, j)- 6, 4’;. jll 

Let us vary the functional 3 over 
(the displacements ui corresponding to 

As we know /3/, the condition for 
variation is equal to zero 

the displacements vi at the running instant of time t 
the unperturbed motion are not varied). 
the functional 3 to be stationary is, that its first 

63 = a&3' + aP63" = 0 (3) 

Here 63',63" are the expressions inthevariation 63 accompanying the corresponding powers 
of the parameter a. 

We note that since the body is in equilibrium, the equation 63' = Omust be satisfied in 
the unperturbed motion. Then from (3) we obtain 

63" = 0 (4) 

We further assume that the displacements ui in the unperturbed motion of the viscoelastic 
body are small and can be found from the equationsof the linear theory of viscoelasticity. 
In this case we can write Eq. (4) as follows: 

where cij are the stresses in the unperturbed motion of the body and 6L.i are the variations in 
the displacements vi. We note that (5) is equivalent to three equations of equilibrium of the 
body and the houndary conditions at its surface inthe unperturbedmotion written in terms of 
the perturbations. 

Let us take, as the variations in the displacements 6Ci , the displacements Vi themselves. 
Then 

$, {~,,j[(Et~k~-Ri~ki)~'k. I] A ctij(Vk. i + 6.i) Vk,j) dV=-O. (6) 

We will assume that the external load acting on the body is one-parametric, i.e. 

Uij = -fiOiy3 p = COnSt 
(7) 

and such, that for any instant of time t>O the smallest eigenvalue li, of the homogeneous 
boundary value problem 

is postive, i.e. J.1 > 0 > 0. 
Let us denote by v' the vector with components Vi, j (c’ = IV,, 1. cl, p3 VI, 39 Vt, It . * .a Vs. al). We 

define the scalar product of two vectors VI', v2’ and the norm of the vector v' as follows: 

(Yl’V*‘) = $ Vp\Vf'\ dV* )I V' (I = (S, V*, jVi, j dl’)“’ 

Let us write Eq. (6) in the form 



(9) 

We know /4/ that the homogeneous boundary value problem described by (8) is selfconjugate 
and its eigenvalues are real. Then we have /5/ 

I > &I, (10) 

From (91, (10)it follows that 

(1 - B'h,)I < PI* + I, (if) 

Using the same representations we can write, in turn, 

I > h,* /I v' 112. 

Thus the left-hand side of inequality (11) does not exceed the value 

(1 - B'&) h,* iI v'li * < 61, t I, (12) 

We note that in general II and I.,* are functions of time, since Eijkl = Eijkr (t 7 p (X)) 
and Ulj" = uijc (f. X). Considering the finite time interval [O,T], we choose on it the minimum 
value (denoting it by cf of the multiplier appearing on the left-hand side of inequality flZt. 

Let f ~~~~~ be the principal stress, largest in module, at a point of the body depending 
also on x and t. Then, applying the Cauchy inequality, we write the following estimate for 
the first term on the right-hand side of (12): 

TO estimate the seccnd term in the same inequality 
'C) or the 9-th order matrix R&t. 

, we use the largest eigenvalue Rmiu(t, 

The r7lation 161 _ R,px(t, T)< fC(Rf;,# holds for Rm,(t, T) . If #jk{(f,T) > .#?fjkl, then 

Rmar(t, 7) < Z(fljk{ (t, 7))) = R(t, T) and we have 

As a result, we can write (12) in the form 

c ii V’ (t) /j < cl-!- i R (t, T) // V’(T) jj d7, (13) 
0 

Cl = po j/ 9’ jj 

If the function R (t,r)has no weak singularity at t = T, we can find a function R,(7) in 
the time intervai [ck,T] such, that 

RI (7) = sup R(t, T) 
=to. 71 

Then (13) will yield the following inequality: 

11 V’ (t) jj < + + f ( RI (T) 11 V'(T) /I dT 
0 

If, on the other hand, the function R (t,z)has a weak singularity at t = T, then we can 
handle the inequality just as was done in /2/. Thus we pass, in the inequality (13), from 

the kernel R (t,?) to the iterated kernel. As we know /7/, from some number n onwards the 
iterated kernels become regular, and we can find the function R,(T) for such kernels. As 
a result, we pass fxom inequality (13) to an inequality analogous to (15). 

Applying to the inequality (15) the Gronwall-Bellman lemma /8/ we obtain 

To study the stability of the body over an infinite time interval, we return to Eq. (b), 
rewriting it es follows: 

$ vi, j.8;j,.lVk,, dV - fSK, = & $ KS -t- FKa + BK, 
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&= uij'vk, ivk, j dV* KS = vi, f (Eijkl- Eijkr) vk. I dl’t 

KS = j Vi, jRljk[vk, l dl't KI = $ (Oip- u,j*)vk, iVk, j dl’, 

K 6= oij%;, ivk, j dv 

In accordance with the constraints (2) imposed on the functions Eijkl (t+ p(X)), Rfjklv Uij”(t, 

x), we can find for anarbitrarilysmall number A>O, an instant of timeT = T (A) such that 

the following inequalities will hold for every instant of time t> T: 

Then we have the following relations for t> T: 

K, < 9A II v’ (0 II*, K, < 3A II v’ (0 II* W3) 

K 3= ~~Vi,j(f~X)~R~j,lk,,(T,X)dTd~'= 
0 

j.ri,j(t,r)[Ilie,,c,,,(T.~)dT - 
i. 

t [Rf,,,--Rljii(f,T)](.,;.~(T'X)dT - 

+ 

3.4 jj v'(t) il ./I V.' /; - 30* \ '(1) Vr' 1; 

. . . . . . . . . . . . . . . . . . . 

R*'= mas Ryih;, 

((0 (T)(/ = mss// ..;:);zxr:d\C,. i < T 

1. j. h. I 

(10 (2) j/ = ma3 11 v' (2) // when T -< 1 

where u& is the principal stress largest in Icod’diG, at the point at which the stress state 
is characterized by the tensor Oil *. 

Taking into account (i8) we obtain, fro% (171, 

h’, = ; vi , (1. S) [ i R:, ,, (f. T) I’,,. , (T> S) dT - R:;i:L.,;, , (t. X) ] dv 
i - i 

In accordance with canditions (2) we have 

Then (6(t-r) is the delta function) 

E[R;kl(f,T)-6((t-T)R;;klJU~,1(T,X)dI~Al)h.,,(f'X) 
i 

@~.~(trX)=~upI vk,,(t?x)l when t>T 
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The last term of relation (19) can be estimated, taking inequality (20) into acoount, as 
follows: 

Ks Q 18 A II v’ 0) II * II o @I II (21) 

As a result, inaquality (19) becomes 

K* <WI + !I v' (t) II (124 /I v'(t) Ij + 27A 1 o (t) (1 + (22) 
3AB II v” II + 3Ba* II v”’ II + 9R* II 0 V) II) 

Let US consider a homogeneous boundary value problem for which we have the corresponding 
equation 

K* = hK, (23) 

As we know /4/, the above problem is selfconjugate and its eigenyalues are real. Let 0 
us make a natural assumption as regards the symmetric matrix Eijk, - &, namely, that all its 
eigenvalues are positive. 

It can be shown that in the case when the stresses utJ* are small, the functional K* -K, 
is positive definite (excluding from our discussion the possibility of rigid displacements of 
the body). Then /5/ we have 

KC > W, (24) 

where X1 is the smallest eigenvalueofthe homogeneous boundary value problem (23). 
As we know /5/, the following estimate holds: 

K* > %; 11 v' I[* 

where I," is the smallest eigenvalue of the homogeneous boundary value problem 

(25) 

K” = h [ AljklVi* jvkv l dV, Aljkl = 
I, i=_i=k=l 

i- 0 in all remaining cases. 

Thus, taking into account the estimates (24), (25), we can write inequality (22) in the form 

(1 -8%) X,"IIv' Wll* <II v’ (t) II (12.4 I/v’ (OII + CM II o W II i (26) 
3ABII \."I/ i 3a*B Iv” II + 9R'II o (T) II ) 

from which follows 

(h, - 8 - 30AhJii:)]l o @)I( < 3 [(A + u*) p I/ v” 11 + (27) 

3R* II 0 m III, t > T 

Assuming that the region occupied by the body is star-like relative to all points of 
some sphere lying within the region in question, we can write the inequality /9/ 

II \’ (1) II < c* II v’ (t) II < c* II 0 0) II (28) 

where c* is a constant depending only on the geometry of the body. 
Thus from the inequalities(27),(28)it follows that the body in question is stable over an 

infinite time interval, provided that A,> 8. This implies, in particular, that when the 
stresses O,j" are constant with respect to time, the value of the critical time is found in 
the same manner as in case of an elastic body whose moduli of elasticity are replaced by the 
sustained moduli ET,*, - Ri&;. 

The stability of the body over a finite time interval can be studied using the inequality 

(16)) (W, from which we obtain 

!!r(t)li<<J. J=Bexp[~~R~(r)dr] v b=c*% 

The quantity which gives a lower estimate for the critical time can be found from the 
non-linear equation 

I = 1) v II* 
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~ENE~LIZ~ SOLUTIONS OF THE DYNAMIC 
PERFECT ELASTOPLASTICITY 

PROBLEbl OF 
l 

S.B. KUKSIN 

The concept of a generalized solution of an initial boundary value problem 

Translated by L.X. 

for the system of Pradtl-Reuss equations is introduced. It is shown that 
a generalized solution exists and is unique , and represents within the 
domain of elasticity a solution of the initial-boundary value problem of 
the dynamic theory of elasticity. An effective method for the approximate 
determination of the generalized solution is given, and conditions at its 
strong discontinuities are obtained. The basic results of this paper were 
published earlier without proof in /l, 2/. 

1, The Prandtl-Reuss equations. Let a perfect elastoplastic body occupy a 
three-dimensional region Q with a smooth boundary D. The state of the body is characterized, 
in Lagrange coordinates, by the stress tensor ~~j(f,zz)~ the velocity of the body particles uI (t, 
s), the elastic strain rate tensor aij(r)= (~'i,j + Vj,j)!2 and the plastic strain rate tensor 
?wi, (t.r) : i< i,iQ 3, O< 1Q T,ZE Q everywhere). 
the boundary D is free and, 

We assume that the measurable part D, of 
that the displacement rate is specified on the part D2 = D \DI. 

The density of the body is assumed constant. Assuming that it is equal to unity, we write the 
equations of elastoplastic flow and initial-boundary conditions /3/ thus 

OijkhTkt. - Ei) (r) i A,$ = 0 (1.f) 

u,’ - Tij, j = P, (1, f) (1.2) 

(Tij”,) (t. X) = 0, XEL),; v,ft%X)= v,‘(t, r), X E D, (i-3) 

Tij(O. 5)~ Tot;(Z), L.i(Og 2)~ Vo,(Z) (I.41 

where aijkk are the coefficients of elasticity, ni (c), ZE D is the outer normal to R, and 
a prime denotes a time differential. We will SUpplement(1.1)-(1.4)witt; the von Mises condition 
of plasticity/3/(t# is the deviator of the tensor Tij) 

TijD(t, I) TijD(t. 2,) <c*’ (1,s) 

The equations (f.l)--(f.j)are ClosedbythePrandtl-Reuss relations connecting the stresses 
withthe plastic strain rate 

X,,(f.r)=r.o,,B(t,r), x>o 

where x = 0 when inequality (1.5) is rigorously satisfied. ThePrandtl-Reuss relations can be 
conveniently replaced by the equivalent Drucker postulate /4/. We shall write it in the 
integrated form 

Si.,~(l,*)(T,~(t,I)--ij(Irt))d*~O (1.6) 

where ufj is a tensor field continuously differentiable in IO, T1 x (Q u 0)‘ such that 

(U*jDUIJD) (tv X) < C**; Uij (t, I) nj (Z) = 0, V.2 E 4 (1.‘;) 

The initial-boundary value problem ft.%) -(i.?iwas studied earlier by Duvaut and Lions, who 
showed in /6/ the unique solvability of the evolutionary variational inequality following from 
(i.i) - (1.7), satisfied by the stress tensor integrated with respect to time. Below we apply 
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