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STABILITY OF BODIES MADE OF NON-HOMOGENEOUSLY
AGING ANISOTROPIC, VISCOELASTIC MATERIAL *

V.D. POTAPOV

Results of the study of stability of compressed rods made of a non-
homogeneously aging viscoelastic material are generalized to the case
of an arbitrary body with anisotropy.

Let us consider a body acted upon by volume forces F and surface loads q applied at the
boundary of the body S, in an orthogonal z;(i=1,2,3),F = {F;},q = {¢g;} coordinate systenm.
The points of the body undergo, under the action of these forces, the displacements u; (¢, x)
determining the trajectory of the unperturbed motion.

Let us assume that in the initial state the body has a small initial distortion av®(x).

In this case the body undergoes additional displacements av; (f, X) so that the total displacement
is u* = u; + a(v; -+ ¢,°). The parameter a is introduced arbitrarily (and can be assumed equal
to unity). The motion of the body determined by the displacements u;* will be called
perturbed, and the displacements av; will be called perturbations.

Let us introduce the displacement norm (V is the volume of the body)

uu h == ( Uy dVJl/' .

bt

Here and henceforth the repeated indices denote summation.

Definition. An unperturbed motion of a viscoelastic body will be called stable, if for
any number 4 >0 a number & = §(4) >0 can be found such that for any initial distorticn
av;’ satisfying the inequality =z v°| < 8. the corresponding displacements au; satisfy the
inequality allvli< 4. 0t < .

If the motion of the body is studied within a finite time interval [0, Il and the critical
value of the displacement norm || v|{|* is given, we can speak of the critical time i,, defining
it as the instant at which the displacement norm al| v|| first attains the value || v|/*: amax|jv
mii<ivi*, 0<t<t, with allv()ll=Ivi*

We shall call the body stable in the time interval [0, T, if £, > 7.

Analogous definitions of stability were used in connection with the non-homogeneously
aging viscoelastic rods in [1, 2] whexe sup|y (¢, z)|. 2= 10, Il (I is the rod length) was used
as the rod deflection norm. hx

Assuming that the deformations are small, we write the equations of state for the material
in the form /1/

0i;=(Eijur— Risir) €t , M)

Esn=CFut+px) Riymen= S Rfmexg (t)dt,  Ripu= R (t + p(x) T+ p(x))
[

The moduli of elasticity £E;p; and relaxation kernels Rfj,,, of the material satisfy the
following relations:

*prikl. Matem.Mekhan.,49,4,648-654,1985,
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lim E},~H=E:,~u=wnst (2)
]

'

0 < R < Rl (t, 7 Riju = sup SR?,-H (t-7)dv
[}

t

S 5“P|R%M——R;,~n(t. 1)]dt—0 as Troo

T x

lim sup { Rijn (t 1) dv= Riju
T—ee 12T %

The function p (x) which has continuous first derivatives in the whole region occupied
by the body, determines the age of the material points with coordinates x, at the instant of
application of the external load.

Assuming that the external loads are conservative (dead weight}, we shall write the
functional /3/ as

9= S [';_ Eimieisen —&; (Riiﬂekl)\l dv — S Fu*dV —§ g dS
v : \4
q
gy = -%— {(u, 5+ us ) +a(v,;+ v+

[(r, ¢ + aDr, ¢ + vy, i) (ur, 5 + avx, ; + avy, ) — a?vy, vy, 51

Let us vary the functional 3 over the displacements v; at the running instant of time t
(the displacements u; corresponding to the unperturbed motion are not varied).

As we know /3/, the condition for the functional I to be stationary is, that its first
variation is equal to zero

83 = add’ + a3 =0 (3)

Here 83, 82" are the expressions in the variation 63 accompanying the corresponding powers
of the parameter «.

We note that since the body is in equilibrium, the equation 83 = 0 must be satisfied in
the unperturbed motion. Then from (3) we obtain

63" =0 (4)

We further assume that the displacements u; in the unperturbed motion of the viscoelastic
body are small and can be found from the equations of the linear theory of viscoelasticity.
In this case we can write Eq. (4) as follows:

S {60:, 5 [(Eijer — Rizia) v, 1] = 043 (0n, 1 ~ vy, ) vy, 3 dV =0 (5)
0

where 0;; are the stresses in the unperturbed motion of the body and 6y, are the variations in
the displacements v;. We note that (5) is equivalent to three equations of equilibrium of the

body and the boundary conditions at its surface inthe unperturbedmotion written in terms of
the perturbations.

Let us take, as the variations in the displacements 6v;, the displacements v; themselves.
Then

S (i s (e — R v 1] = 035 (v, 1 + Ve Uk, ) dV =0. (6)
v
We will assume that the external load acting on the body is one-parametric, i.e.
O;; = —ﬁﬁ',‘jo, ﬁ = c¢onst (7)

and such, that for any instant of time !> 0 the smallest eigenvalue A, of the homogeneous
boundary value problem

SE,‘,'HU," Uk, 1 dV = LS G,‘jnl)k, iUk, ; av (8)
v v

is postive, i.e. M >a¢>0,
Let us denote by v’ the vector with components v; ; (¢ = [v} 1.0y 5, 08, Vo1, - - Vg g)) We
define the scalar product of two vectors v;’, v;" and the norm of the vector v’ as follows:

’ 14/,
(vi've)= 5’ wWa®dv, Jvip=(§ v i av )"
v

Let us write Eq. (6) in the form
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I =Bl + I, + 1, ®
I=S vi, iE v, 1 AV,

S 0,-,'°vk‘ ik, j av
v 4
12=S Gijov;, Ve, ; 4V, 13=S vy, 5 {(Rigvn, 1) 4V

Y \4

We know /4/ that the homogeneous boundary value problem described by (8) is selfconjugate
and its eigenvalues are real. Then we have /5/

I'>A\ (10)
From (9}, {10) it follows that
(A —=PpM)ICpl, + 1, {11)
Using the same representations we can write, in turn,
I>a*v s
Thus the left-hand side of ineqguality (ll) does not exceed the value
G —Br) M lIviIP Bl + 1, {12)

We note that in general 1, and A,* are functions of time, since E;j, = E;p; (t = p (x))
and o0; = a;° (t. x). Considering the finite time interval [0, T], we choose on it the minimum
value {denoting it by ¢} of the multiplier appearing on the left-hand side of inequality (12).

Let | 0|gax be the principal stress, largest in modulo, at a point of the body depending
also on ¥ and t. Then, applying the Cauchy inequality, we write the following estimate for
the first term on the right-hand side of (12):

Loy 1¥"h o=5up|0|mas

To estimate the second term in the same :.nequallty, we use the largest eigenvalue HRp. (1,
T} of the 9-th order matrix Ri

The relation /6/ Rpax(ts I)QVE(R,,” holds for Rpa(t1). If R’:,-;,;(t,T)}RF,-“, then
Ruas (6 1) KV S(RGu (1)) =R(4 1) and we have
t

vt § B, (nomyav ar < v @ SR @6 0 v/ (1) o
A3 [ [

As a result, we can write (12) in the form

b

civi<a+ RGOV @] dr (13)
i)
e, = Bol| v il

If the function R (I, 1) has no weak singularity at ¢ =1, we can find a function R, (1) in
the time interxval [0, 7] such, that

Ri(t)== sup R{t,1 (14)
1 (1) or, 1)
Then (13) will yield the following ineguality:
¢
, . 1 ’
vl <E++{Bmivme (15)
0
If, on the other hand, the function R (f, 1)has a weazk singularity at (=%, then we can
handle the ineguality just as was done in /2/. Thus we pass, in the inequality (13), from
the kernel R (i, 1) to the iterated kernel. As we know /7/, from some number n onwards the
iterated kernels become regular, and we can find the functien R, (t) for such kernels. As

a result, we pass from inequality (13) to an ineguality analogous to (15).
Applying to the inequality (15) the Gronwall~-Bellman lemma /B/ we obtain

V() <~exp[ SR,@)J:} (16

To study the stability of the body over an infinite time interval, we return to Eg. (6),
rewriting it as follows:

g v, Eisve, 14V — BKy = Ky + Ks + BEy + BK (17)
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éo,, Vr, @k, ; AV K:—'S va.j(E\}kl"Ei;H) vk 14V,
Ko o

vi, Rigavr, 18V K.—é(o,, — 63;*) vk, . 4V
K5 = 5 G;; Uk, iVk, ; dav

In accordance with the constraints (2) imposed on the functions Egu £+ ¢ (x)), R, 0:° (8,
x), we can find for anarbitrarily small number A4 >0, an instant of timel = T (4) such that
the following inequalities will hold for every instant of time t> T:

IE:jm —Ejul <A, o —o;*| <A
f(sup | Rijp (8 1) — R |dv < A

Then we have the following relations for t > T:

K, <944 v OIF K, 340V ()P (18)

t
Ky = \ vi{ts x)§ Riavy, (1, x) drdV =
(v 0t x){\ RSywp (1. x)dT —

v

1

‘\ [ .,J“—R,,“(t )] (LX) dT —

T

!

\" Risua (1) e, 1 (1 X) 1T 04 [V (1) -0 (1) —
H

IR v () - [o(T)§ -~ f vins (%) { R (12 1) v, (1 0) dT adV
- r
Ky =§ (0 —0:*) vy, i, 54V \h o, dV <
' N

34V (O 4v T E=Ba% N () N

................

R* = max RY,, 0*=maxoma
1, 5, k.1 x=

lo (T)[| = max|{v' (1] when 017

lo (1)j| = max||v' ()ii when T <t

where 0;“ is the principal stress largest in modulc, at the peint at which the stress state

is characterized by the tensor g;;*.

Taking into account (18) we obtain, from (17),

K> < BE +lIv O (124 v ()l — 3AB v i + (19)
3o*Bl v+ 94w (DIl = 9R*{lo (1)) — K,
= \ vy (8 x) (E:jkl — R, (tx)dl
\A‘ 1 »
Ke= ‘\ vi,(1%) ’V ( H (t. )y (T x)dT — R:.;‘::LV:- 1t %) } av
v -r
In accordance with conditions (2) we have
!
s‘ R;ji.[ (t—- Ndt= H—:JIU - A
T
Then (6 (t — 1) is the delta function)
t
; (20)

!R;jkl (1) vk, 1 (1. x)dT — R v (1 X) =

t
VIRG (0 1) = 80— 1) Rijualvn, 1 (1. x) AT < Ay, 1 (8 %)

T
o1 (hx)=sup|v, (1,X)| when t>T
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The last term of relation (19) can be estimated, taking inequality (20) into account, as
follows:

Ee<1BA|IV(®)] - Jowm! @1

As a result, inequality (19) becomes

K* BE + v 1248 v @ + 274 fe® | + (22)
3AB | v* ||+ 3Po* | v7 | + IR* e (T) )

Let us consider a homogeneous boundary value problem for which we have the corresponding
equation K* = A-Kl (23)

As we know /4/, the above problem is selfconjugate and its elgenvalues are real. Let
us make a natural assumption as regards the symmetric matrix Eukl - R.jm , namely, that all its
eigenvalues are positive.

It can be shown that in the case when the stresses o¢;;* are small, the functional K* — K,
is positive definite (excluding from our discussion the possibility of rigid displacements of
the body). Then /5/ we have

K* > MK, (24)

where A; is the smallest eigenvalue of the homogeneous boundary value problem (23).
As we know /5/, the following estimate holds:

K¥ > L) v |12 {25)
where A,° is the smallest eigenvalue of the homogenecus boundary value problem

* . (V 1' i=].=k=l
K= v A e 1@V A=\g in 213 remaining cases.

Thus, taking into account the estimates (24), (25), we can write inequality (22) in the form

A =B AL OF I v (@01 (124 v (Nl + 184 [le () || + (26)
B3ABN VS || + 3e*B Il v Il + 9R*[le@ (T) )

from which follows

ho— B — 3040/ o (] <<B (4 + o*) B v ||+ 27
3R* e (T)I1,t>T

Assuming that the region occupied by the body is star-like relative to all points of
some sphere lying within the region in question, we can write the inequality /9/

v < e* v @Oll<e* e O (28)

where c¢* is a constant depending only on the geometry of the body.

Thus from the inequalities (27), (28)it follows that the body in question is stable over an
infinite time interval, provided that X, > B. This implies, in particular, that when the
stresses 0, are constant with respect to time, the value of the critical time is found in
the same manner as in case of an elastic body whose moduli of elasticity are replaced by the
sustained@ moduli E,,“ — R,]M.

The stability of the body over a finite time interval can be studied using the inequality
(16), (28), from which we obtain

Iv(t)yKJ. J==bexp [—1—

= c

Rl(f)dr] , b=t

<

oL T

The quantity which gives a lower estimate for the critical time can be found from the
non-linear equation
J=1lv*
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GENERALIZED SOLUTIONS OF THE DYNAMIC PROBLEM OF
PERFECT ELASTOPLASTICITY *

S.B. KUKSIN

The concept of a generalized solution of an initial boundary value problem
for the system of Pradtl-Reuss equations is introduced. It is shown that
a generalized solution exists and is unique, and represents within the
domain of elasticity a solution of the initial-boundary value problem of
the dynamic theory of elasticity. An effective method for the approximate
determination of the generalized solution is given, and conditions at its
strong discontinuities are obtained, The basic results of this paper were
published earlier without proof in /1, 2/.

1. The Prandtl- Reuss equations. Let a perfect elastoplastic body occupy a
three-dimensional region & with a smooth boundary D. The state of the body is characterized,
in Lagrange coordinates, by the stress tensor T;; (/, z), the velocity of the body particles v, (f,
z), the elastic strain rate tensor &; (V)= (1, ; + v; ;)2 and the plastic strain rate tensor
A (t.ry (16,13, 0Kt T,z Q everywhere). We assume that the measurable part D, of
the boundary D is free and, that the displacement rate is specified on the part D, = D\ D,.
The density of the body is assumed constant., Assuming that it is equal to unity, we write the
equations of elastoplastic flow and initial-boundary cenditions /3/ thus

(IUMT“~€“(L‘)—;7.,'5=O (11)

v — 1y, ;=Fi(t, 2) 1.2)
()t 2)=0, z=Dy; vi{t,z)=vt 2} z=D, (1.3)
T (0 7) = Tay(2), (0, 2) = vo, (2) (1.4)

where a;;» are the coefficlents of elasticity, =n;(z),zE D is the outer normal to £, and
a prime denotes a time differential. We will supplement (1.1)—(1.4) with the von Mises condition
of plasticity/3/(1;# is the deviator of the tensor 1;))
TP (1 ) TP (1) oy (1.5)
The equations (1.1)-—(1.5)are closed by the Prandtl-Reuss relations connecting the stresses
withthe plastic strain rate
7-“]‘(f~-r)=)'.ojjp(tvr)y X>0

where x = () when inequality (1.5) is rigorously satisfied., The Prandtl-Reuss relations can be
conveniently replaced by the equivalent Drucker postulate /4/. We shall write it in the
integrated form

$ais(t ) (15t 2) — 045 (ts 1)) d2 > 0 (1.6)
where o is a tensor field continuously differentiable in [0, 7] X (@ U D), such that
(0:P0:,P) (8 2) eu?s oyt T)n;(2) =0, Yz D, (1.7)

The initial-boundary value problem (1.1) — (1.7)was studied earlier by Duvaut and Lions, who
showed in /6/ the unique solvability of the evolutionary variational inequality following from
(1.1) — (1.7), satisfied by the stress tensor integrated with respect to time. Below we apply
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